https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Using tree detection algorithms to predict stand sapwood area, basal area and stocking density in Eucalyptus regnans forest https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:26654 Den) of a 69-year-old Eucalyptus regnans forest comprising 251 plots with resolution of the order of 0.04 ha. Using the NCut method we predicted basal area (BAHa) per hectare and sapwood area (SAHa) per hectare, a well-established proxy for transpiration. Sapwood area was also indirectly estimated with allometric relationships dependent on LiDAR derived SDen and BAHa using a computationally efficient procedure. The individual tree detection (ITD) rates for the LMF and NCut methods respectively had 72% and 68% of stems correctly identified, 25% and 20% of stems missed, and 2% and 12% of stems over-segmented. The significantly higher computational requirement of the NCut algorithm makes the LMF method more suitable for predicting SDen across large forested areas. Using NCut derived ITD segments, observed versus predicted stand BAHa had R² ranging from 0.70 to 0.98 across six catchments, whereas a generalised parsimonious model applied to all sites used the portion of hits greater than 37 m in height (PH₃₇) to explain 68% of BAHa. For extrapolating one ha resolution SAHa estimates across large forested catchments, we found that directly relating SAHa to NCut derived LiDAR indices (R² = 0.56) was slightly more accurate but computationally more demanding than indirect estimates of SAHa using allometric relationships consisting of BAHa (R² = 0.50) or a sapwood perimeter index, defined as (BAHaSDen)½ (R² = 0.48).]]> Wed 11 Apr 2018 16:13:53 AEST ]]> Use of a forest sapwood area index to explain long-term variability in mean annual evapotranspiration and streamflow in moist eucalypt forests https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:22843 Eucalyptus regnans and E. delegatensis stands, correlated strongly with forest overstorey stocking density (R2 0.72). This curvilinear relationship was used with routine forest stocking density and basal area measurements to estimate sapwood area of the forest overstorey at various times in 15 research catchments in undisturbed and disturbed forests located in the Great Dividing Range, Victoria, Australia. Up to 45 years of annual precipitation and streamflow data available from the 15 catchments were used to examine relationships between mean annual loss (evapotranspiration estimated as mean annual precipitation minus mean annual streamflow), and sapwood area. Catchment mean sapwood area correlated strongly (R2 0.88) with catchment mean annual loss. Variation in sapwood area accounted for 68% more variation in mean annual streamflow than precipitation alone (R2 0.90 compared with R2 0.22). Changes in sapwood area accounted for 96% of the changes in mean annual loss observed after forest thinning or clear-cutting and regeneration. We conclude that forest inventory data can be used reliably to predict spatial and temporal variation in catchment annual losses and streamflow in response to natural and imposed disturbances in even-aged forests. Consequently, recent advances in mapping of sapwood area using airborne light detection and ranging will enable high resolution spatial and temporal mapping of mean annual loss and mean annual streamflow over large areas of forested catchment. This will be particularly beneficial in management of water resources from forested catchments subject to disturbance but lacking reliable long-term (years to decades) streamflow records.]]> Sat 24 Mar 2018 07:16:04 AEDT ]]>